
Applied Soft Computing 111 (2021) 107679

a

b

c

e
v
r
i
a

d
c
F
d
s
F
i
s
t
(

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Dynamic fuzzy neighborhood rough set approach for interval-valued
information systemswith fuzzy decision
Lei Yang a,∗, Keyun Qin a, Binbin Sang b, Weihua Xu c

School of Mathematics, Southwest Jiaotong University, Chengdu, 611756, PR China
School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, PR China
College of Artificial Intelligence, Southwest University, Chongqing, 400715, PR China

a r t i c l e i n f o

Article history:
Received 3 October 2020
Received in revised form 17 June 2021
Accepted 29 June 2021
Available online 7 July 2021

Keywords:
Interval-valued information system with
fuzzy decision
δ-fuzzy neighborhood relation
Fuzzy neighborhood rough set
Incremental mechanisms
Dynamic algorithms

a b s t r a c t

Nowadays, many extended rough set models are proposed to acquire valuable knowledge from
interval-valued information system. These existing models mainly focus on different forms of similarity
relations. However, most of these similarity relations are qualitative rather than quantitative, which
is not reasonable in some practical cases. In addition, with the arrival of new objects and the removal
of obsolete objects, the interval-valued information system with fuzzy decision (IvIS_FD) is always
changing with time. Therefore, how to efficiently mining knowledge from dynamic IvIS_FD is a
meaningful topic. Motivated by these two issues, we study the dynamic fuzzy neighborhood rough set
approach for IvIS_FD, aiming to effectively update the rough approximations when the IvIS_FD evolves
over time. Firstly, δ-fuzzy neighborhood relation is defined to describe the similarity relation between
objects quantitatively. Secondly, we introduce a novel fuzzy neighborhood rough set model and its
matrix representation suitable for IvIS_FD. On this basis, we discuss the incremental mechanisms
to update fuzzy neighborhood approximations when multiple objects are added to or deleted from
an IvIS_FD, respectively. Meanwhile, corresponding dynamic algorithms are designed and explained.
Finally, experiments are performed on nine public data sets to evaluate the performance of the dynamic
fuzzy neighborhood rough set model. Experimental results verify that the proposed model is effective
and efficient for updating rough approximations in dynamic IvIS_FD.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

At the information era, data is an important carrier of knowl-
dge. With the advancement of science and technology, single-
alued data cannot satisfy people’s demands for knowledge rep-
esentation in production and life. Consequently, some general-
zed and complicated data representation types have emerged,
mong which interval-valued data is a typical instance.
In practical applications, interval-valued data is widely used to

escribe the imprecise and vague concepts, such as temperature
hanges, stock price fluctuations, blood pressure ranges and so on.
urthermore, in some decision analysis problems, interval-valued
ata is always accompanied by fuzzy decision attributes, and the
ample set evolves over time (i.e., dynamic interval-valued data).
or example, the data for climate description is a typical dynamic
nterval-valued data with fuzzy decision. A specific application
cenario is introduced as follows. The interval-valued data is used
o record the temperature, humidity, and ultraviolet intensity
i.e., attributes) of each day (i.e., object), and the evaluation of
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the quality of each day’s weather is described by a fuzzy con-
cept (i.e., fuzzy decision). Over time, new data records will be
gradually added to this data, and some old data will be gradually
removed from this data (i.e., the data will dynamically evolve
over time). How to mine such data sets effectively and efficiently
to obtain useful information or rules? Motivated by this issue,
this study focuses on investigating efficient knowledge discovery
methods for dynamic interval-valued data with fuzzy decision.

1.1. Comparative analysis of related works

As a natural data mining or knowledge discovery method,
rough set theory (RST) [1] proposed by Pawlak has been widely
used in pattern recognition [2], decision analysis [3,4] and other
fields. The RST can handle various incomplete, inaccuracy and
inconsistent information without any prior knowledge. However,
the original RST only applies to discrete data sets. To make the
RST more widely applicable to different types of data sets, many
extended rough set models have been proposed successively [5–
11]. Moreover, the research on knowledge discovery of interval-
valued data sets based on the RST has received more and more

attention [12–15].
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In recent years, some extended rough set models are proposed
to acquire valuable knowledge from interval-valued data. For
an interval-valued decision system (IvDS), Dai et al. constructed
the similarity measure between two intervals based on possible
degree, and defined the θ-similarity classes of objects by using
a given similarity rate. Then, the rough approximation opera-
tors, the θ-accuracy and θ-roughness measures are presented
for IvDS [16]. In an interval-valued information system (IvIS),
Leung et al. proposed the α-tolerance relations based on mis-
classification rate, and presented a rough set model by using
α-tolerance classes [17]. At the same time, the α-classification
reduction method for IvIS was presented to obtain all classifi-
cation rules. For the IvDS, Zhang et al. constructed a similarity
relation between objects by using multi-confidence, and then
introduced a related rough set model [18]. For an incomplete IvIS,
Dai et al. constructed α-weak similarity degree and α-weak simi-
larity relation, and then proposed the notions of upper and lower
approximations based on the α-weak similarity relation [19].
Ma studied the kernel similarity relation based on kernel func-
tion to compute the similarity between objects in the IvDS, and
proposed the notions of kernel upper and lower approximation
operators [20]. Subsequently, the kernel accuracy measure, kernel
roughness measure, and kernel approximation accuracy mea-
sure were proposed and examined. The comparative among the
extended models in the above literatures is shown in Table 1.

For different types of interval-valued data, many rough set
models based on different similarity relations were explored to
discover knowledge in the above researches. However, most of
these similarity relations are qualitative relations rather than
quantitative relations in the sense that, these similarity relations
are classical binary relation constructed by using some thresholds
on similarity degrees. For example, in [16], the similarity rela-
tion is defined by the magnitude between the similarity degree
and threshold θ . If the similarity degree between two objects is
greater than or equal to threshold δ, a certain relation is con-
sidered between the two objects. This definition is unreasonable
for numerical data sets in some cases, because there is no essen-
tial difference between real number 0.799 and real number 0.8.
However, if the threshold is set to 0.8, then the two objects with
similarity of 0.8 are related, while the two objects with similarity
of 0.799 are considered not related. Therefore, qualitative simi-
larity relations are not desirable in most application scenarios. In
addition, the determination of the threshold values is subjective
in many cases. As a consequence, one of the motivations of
this study is to realize the quantitative description of similarity
relation in the context of an interval-valued information system
with fuzzy decision (IvIS_FD).

In practical application, with the collection of new data and
the deletion of obsolete data, the original data sets will change.
The changes here include the changes of objects [21–23], at-
tributes [24,25], attribute values [26,27] and multi-dimensional
changes [28,29]. When data sets change over time, the original
knowledge will not be applicable. Therefore, we need to make
some strategies to update the original knowledge. Traditional
algorithms for renovating knowledge need to calculate the whole
updated data set from the beginning, which is inefficient or
even infeasible in practical application. The incremental learn-
ing method provides a good idea for us to acquire knowledge
efficiently in dynamic environment.

In recent years, many scholars have proposed substantial in-
cremental knowledge discovery approaches based on RST accord-
ing to the change of different dimension of data sets [30–37].
Some recent research results on incremental knowledge discov-
ery are introduced in Table 2. Through analysis, we can know
that scholars have done a lot of works on the dynamic updating

rough approximations methods for different types of information
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systems. Some methods study the change of approximations ac-
cording to the change of single element, while most methods
use the matrix representation of rough set model to study the
update of approximations when multiple elements change. It is
worth noting that these existing methods are not suitable for
the dynamic IvIS_FD. Hence, another motivation of this paper
is to realize the dynamic updating of approximations under the
background of dynamic IvIS_FD with time-evolving objects.

1.2. Our work

Based on all the above discussions, we propose dynamic up-
dating approach of rough approximations for fuzzy neighbor-
hood rough set in IvIS_FD with time-evolving objects. The main
contributions of this study are summarized as follows.

• We present a novel fuzzy neighborhood rough set model
suitable for IvIS_FD, then its matrix representation method
and matrix-based static calculation approximations algo-
rithm is introduced.
• We construct incremental mechanisms to update the ap-

proximations of the proposed model when the objects
change. Meanwhile, corresponding matrix-based dynamic
algorithms are designed.
• Comparative experiments are executed on nine public data

sets, and the results show that the proposed model and
dynamic algorithms are effective and efficient.

The remaining content of this paper is arranged as follows. The
preliminary knowledge related to this study is briefly reviewed
in Section 2. In Section 3, the fuzzy neighborhood rough set
model suitable for IvIS_FD and the matrix representation of the
proposed model are constructed. Section 4 presents dynamic
update mechanisms of fuzzy neighborhood rough set and two
kind of dynamic algorithms. Experimental design and analysis are
presented in Section 5. On the basis of summarizing this work, the
theoretical and practical implications of the proposed method,
the weaknesses of the proposed method, and future work are
given in Section 6.

2. Preliminaries

In order to make the article more fluent, some essential con-
cepts of IvIS and fuzzy rough set are briefly reviewed in this
section. More detailed descriptions can be found in [21,46–48].

2.1. Some fundamental concepts about IvIS

In general, a closed interval on the real numbers set R is a set
of real numbers in the form of I = [l, r] = {x ∈ R | l ≤ x ≤ r},
l ≤ r , where l and r are called the left and right endpoint of closed
interval I , respectively.

Assume I1 = [l1, r1] and I2 = [l2, r2] are two intervals. The
ntersection and union operation of I1 and I2 are denoted as
ollows:

1 ∩ I2 =
{
[max{l1, l2},min{r1, r2}], max{l1, l2} ≤ min{r1, r2},
∅, otherwise.

(1)

I1 ∪ I2 =
{
[min{l1, l2},max{r1, r2}], max{l1, l2} ≤ min{r1, r2},
[l1, r1] ∪ [l2, r2], otherwise.

(2)

An information system is usually represented by a quadruple
(U, A, V , f ), where U = {x , x , . . . , x } is a non-empty finite
1 2 m
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omparison between different extension models for IvIS.
Year Authors Data background Specific methods Binary relation Reference

2008 Leung et al. IvIS α-tolerance relation based on misclassification rate was introduced to propose a rough
set model

Qualitative [17]

2013 Dai et al. IvDS Similarity measure based θ-similarity relation and rough approximation operators Qualitative [16]
2014 Zhang et al. IvDS Multi-confidence based similarity relation and the related rough set model Qualitative [18]
2017 Dai et al. Incomplete IvIS α-weak similarity degree, α-weak similarity relation, and the relevant approximations Qualitative [19]
2017 Ma IvDS kernel upper and lower approximation operators based on kernel similarity relation Qualitative [20]
Table 2
The review of some incremental methods for updating approximations.
Year Authors Incremental feature selection methods Reference

2016 Zhang et al. Incremental approaches for updating approximations of the similarity-based rough set model in an IvIS with
time-evolving attributes

[38]

2017 Hu et al. Incremental updating approximations when objects are added into or deleted from the fuzzy information system
over two universes

[39]

2017 Zeng et al. Incremental mechanism of updating a novel Gaussian kernel fuzzy rough set when the attribute values changed [40]
2017 Hu et al. Dynamic mechanisms to update approximations of multi-granulation rough sets while refining or coarsening

attribute values
[41]

2017 Huang et al. Calculating rough approximations of fuzzy concepts in dynamic fuzzy decision systems with simultaneous
variation of objects and features

[42]

2020 Guo et al. Dynamic updating approximations approach for double-quantitative decision-theoretic rough sets with the
variation of objects

[43]

2020 Huang et al. Incremental approaches for maintaining approximations in dynamic composite dominance rough set with the
change of attributes

[44]

2020 Wang et al. Updating approximations approach for dynamic ordered information systems when attributes increase and
attribute values vary simultaneously

[45]
2
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Table 3
An interval-valued information system with fuzzy decision.

U a1 a2 a3 a4 a5 d̃

x1 [2.17,2.86] [2.45,2.96] [5.32,7.23] [3.21,3.95] [2.54,3.12] 0.5
x2 [3.37,4.75] [3.43,4.85] [7.24,10.47] [4.00,5.77] [3.24,4.70] 0.8
x3 [1.83,2.70] [1.78,2.98] [7.23,10.27] [2.96,4.07] [2.06,2.79] 0.2
x4 [1.35,2.12] [1.42,2.09] [2.59,3.93] [1.87,2.62] [1.67,2.32] 0.2
x5 [3.46,5.35] [3.37,5.11] [6.37,10.28] [3.76,5.70] [3.41,5.28] 1.0
x6 [2.29,3.43] [2.60,3.48] [6.71,8.81] [3.30,4.23] [3.01,3.84] 0.8
x7 [2.22,3.07] [2.43,3.32] [4.37,7.05] [2.66,3.68] [2.39,3.20] 0.9

set of objects, A = {a1, a2, . . . , an} is a non-empty finite set
of attributes, V = ∪a∈AVa and Va is the domain of attribute a,
f : U×A→ V is the information function of information system,
f (x, a) ∈ Va (∀ x ∈ U, a ∈ A). If for any x ∈ U, a ∈ A, f (x, a) =
[al(x), ar (x)], then (U, A, V , f ) is called an IvIS and Va is a set of
intervals. When IvIS is accompanied by fuzzy decision, we call it
interval-valued information system with fuzzy decision (IvIS_FD).
Generally, we use (U, A ∪ {d̃}, V , f ) to represent an IvIS_FD. This
tudy will take IvIS_FD as the background. An example (Table 3)
hown in [49] is used to illustrate the concept of IvIS_FD.
Chen and Qin indicated that since the attribute value of an

bject in an IvIS is an interval, and the similarity of two intervals
epends on the length of the interval where they intersect [46],
he following definition can be given in an IvIS.

efinition 1. Let (U, A, V , f ) be an IvIS. For any xi, xj ∈ U and
k ∈ A, the similarity degree between xi and xj under the attribute

ak is defined as

Sak (xi, xj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, f (xi, ak) ∩ f (xj, ak) = ∅,
1, f (xi, ak) ∩ f (xj, ak) ̸= ∅

∧|f (xi, ak) ∪ f (xj, ak)| = 0,
|f (xi,ak)∩f (xj,ak)|
|f (xi,ak)∪f (xj,ak)|

, otherwise,

(3)

where |·| expresses the length of interval. In this paper, we
stipulate that the length of a single point is zero.

Given an IvIS, for any xi, xj ∈ U , there are many definitions of
the similarity degree between x and x under the attribute set A.
i j

3

This paper adopts the definition proposed by Yu and Xu in [21].
The specific definition is described below.

Definition 2. Let (U, A, V , f ) be an IvIS. For any xi, xj ∈ U and
ak ∈ A, Sak (xi, xj) is the similarity degree between xi and xj under
the attribute ak. The similarity degree between xi and xj under the
attribute set A is defined as

SA(xi, xj) = min{Sak (xi, xj)|ak ∈ A}. (4)

Example 1. Table 3 shows an IvIS_FD, where U = {x1, x2, . . . , x7}.
From Eqs. (3) and (4), the SA is computed as

SA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0.0846 0.3643
0 1 0 0 0.6324 0.0222 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0.6324 0 0 1 0 0

0.0846 0.0222 0 0 0 1 0.0766
0.3643 0 0 0 0 0.0766 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
7×7

.

.2. Fuzzy rough set

Dubois and Prade proposed fuzzy rough set model [47] by
ombining fuzzy set and RST. The fuzzy rough set model can deal
ith numerical or continuous data. In this subsection, we intro-
uce some basic concepts of fuzzy set, fuzzy similarity relation
nd fuzzy approximation operators.
Let U be a non-empty universe, mapping A : U → [0.1] is

alled a fuzzy set on U . The set of all fuzzy sets on U is denoted
s F(U). A fuzzy binary relation R on U is called fuzzy similarity
elation if R satisfies

(1) Reflexivity: R(x, x) = 1, ∀x ∈ U;
(2) Symmetry: R(x, y) = R(y, x), ∀x, y ∈ U .
For any x ∈ U , every fuzzy similarity relation R can induce a

fuzzy similarity class [x]R = {(y, R(x, y)) : y ∈ U}.

efinition 3. Given a non-empty universe U and a fuzzy sim-
larity relation R. For any A ∈ F(U), the fuzzy lower and upper
pproximations of A are defined as

A(x) = inf max{1− R(x, y),A(y)}, x ∈ U, (5)

y∈U
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RA(x) = sup
y∈U

min{R(x, y),A(y)}, x ∈ U . (6)

RA and RA are called the fuzzy lower and upper approximation
perators of A, respectively.

. Fuzzy neighborhood rough set based on IvIS_FD

In this section, the fuzzy neighborhood rough set model for
vIS_FD is proposed. Considering that matrix operation is a sig-
ificant part in mathematics, the matrix representation of fuzzy
eighborhood rough set is also studied in this section.

.1. Fuzzy neighborhood rough set based on IvIS_FD

Firstly, according to the similarity degree between objects
n the IvIS, the δ-fuzzy neighborhood relation in the IvIS_FD is
efined. Furthermore, the definition of δ-fuzzy neighborhood in-
ormation granule is proposed. Then, a fuzzy neighborhood rough
et model is proposed by combining δ-fuzzy neighborhood rela-
ion with fuzzy decision. Meanwhile, some related properties of
he proposed model are studied. Finally, the fuzzy neighborhood
pproximation accuracy is introduced.

efinition 4. Let I = (U, A ∪ {d̃}, V , f ) be an IvIS_FD, ∀x, y ∈ U
nd δ ∈ (0, 1]. For any B ⊆ A, the δ-fuzzy neighborhood relation
ith respect to B is defined as

δ
B = {((x, y), SB(x, y)) : SB(x, y) ≥ δ, (x, y) ∈ U2

}, (7)

where SB(x, y) is the similarity degree between x and y under B.
Threshold δ, named neighborhood radius, is used to control the
similarity degree between objects.

Obviously, Rδ
B is reflexive and symmetric.

Definition 5. Let I = (U, A ∪ {d̃}, V , f ) be an IvIS_FD, ∀x, y ∈ U
and δ ∈ (0, 1]. For any B ⊆ A, Rδ

B is the δ-fuzzy neighborhood re-
lation with respect to B. For any x ∈ U , the δ-fuzzy neighborhood
information granule related to x is defined as

[x]δB(y) =
{
SB(x, y), SB(x, y) ≥ δ;

0, SB(x, y) < δ.
(8)

Normally, [x]δB is called δ-fuzzy neighborhood class induced by
Rδ
B.

Property 1. Let I = (U, A ∪ {d̃}, V , f ) be an IvIS_FD, δ, δ1, δ2 ∈

0, 1], B, B1, B2 ⊆ A. Rδ
B is the δ-fuzzy neighborhood relation induced

y B. The following properties hold.
1) If B1 ⊆ B2, then Rδ

B2
⊆ Rδ

B1
;

2) If δ1 ≤ δ2, then [x]
δ2
B ⊆ [x]

δ1
B for any x ∈ U.

roof. (1) If B1 ⊆ B2, it is easy to discover SB2 (x, y) ≤ SB1 (x, y) for
ny (x, y) ∈ U2 according to Definition 2. For any (x, y) ∈ Rδ

B2
, we

an obtain SB2 (x, y) ≥ δ according to Definition 4, so SB1 (x, y) ≥ δ.
urthermore, (x, y) ∈ Rδ

B1
. To sum up, Rδ

B2
⊆ Rδ

B1
.

(2) According to Definition 5, if δ1 ≤ δ2, it is obvious that
x]δ2B (y) ≤ [x]δ1B (y) for any x, y ∈ U . So [x]δ2B ⊆ [x]

δ1
B for any

x ∈ U . □

Definition 6. Let I = (U, A∪ {d̃}, V , f ) be an IvIS_FD, δ ∈ (0, 1].
or any B ⊆ A, Rδ

B is the δ-fuzzy neighborhood relation induced
y B. The fuzzy neighborhood lower and upper approximations of
he fuzzy decision d̃ with respect to B are defined as
δ
Bd̃(x) = inf max{1− Rδ

B(x, y), d̃(y)}, x ∈ U, (9)

y∈U

4

Rδ
Bd̃(x) = sup

y∈U
min{Rδ

B(x, y), d̃(y)}, x ∈ U, (10)

here Rδ
B(x, y) = [x]

δ
B(y).

roperty 2. Let I = (U, A ∪ {d̃}, V , f ) be an IvIS_FD, δ, δ1, δ2 ∈

0, 1]. Rδ
Ad̃ and Rδ

Ad̃ are the fuzzy neighborhood lower and upper
approximation operators of d̃. The following properties hold.
(1) Rδ

Ad̃ ⊆ d̃ ⊆ Rδ
Ad̃;

(2) B ⊆ A⇒ Rδ
Bd̃ ⊆ Rδ

Ad̃, R
δ
Ad̃ ⊆ Rδ

Bd̃;

(3) δ1 ≤ δ2 ⇒ Rδ1
A d̃ ⊆ Rδ2

A d̃, Rδ2
A d̃ ⊆ Rδ1

A d̃.

Proof. (1) For any x ∈ U , we can discover SA(x, x) = 1 according
to Definitions 1 and 2. By Definition 4, Rδ

A(x, x) = 1. Furthermore,
max{1 − Rδ

A(x, x), d̃(x)} = d̃(x). It is obvious that infy∈U max{1 −
Rδ
A(x, y), d̃(y)} ≤ d̃(x) from Definition 6, namely, Rδ

Ad̃(x) ≤ d̃(x). So
δ
Ad̃ ⊆ d̃. Similarly, it is easy to prove d̃ ⊆ Rδ

Ad̃. To summarize,

Rδ
Ad̃ ⊆ d̃ ⊆ Rδ

Ad̃.
(2) According to Property 1, if B ⊆ A, then Rδ

A ⊆ Rδ
B. So for

any (x, y) ∈ U2, Rδ
A(x, y) ≤ Rδ

B(x, y). Obviously, infy∈U max{1 −
Rδ
A(x, y), d̃(y)} ≥ infy∈U max{1 − Rδ

B(x, y), d̃(y)}, namely, Rδ
Ad̃(x) ≥

Rδ
Bd̃(x). So Rδ

Bd̃ ⊆ Rδ
Ad̃. Similarly, it is easy to prove Rδ

Ad̃ ⊆ Rδ
Bd̃.

(3) If δ1 ≤ δ2, by Definition 4, we can get Rδ2
A ⊆ Rδ1

A . Similar to
the proof process in (2), we can easily prove that Rδ1

A d̃ ⊆ Rδ2
A d̃ and

Rδ2
A d̃ ⊆ Rδ1

A d̃. □

Definition 7. Let I = (U, A∪ {d̃}, V , f ) be an IvIS_FD, δ ∈ (0, 1].
For any B ⊆ A, the fuzzy neighborhood approximation accuracy
of d̃ with respect to B is defined as

Acc =

∑
x∈U Rδ

Bd̃(x)∑
x∈U Rδ

Bd̃(x)
. (11)

Apparently, 0 ≤ Acc ≤ 1.

3.2. Matrix representation of the fuzzy neighborhood approxima-
tions in IvIS_FD

From Definition 6, the calculation of fuzzy neighborhood ap-
proximation sets is mainly related to δ-fuzzy neighborhood re-
lation and fuzzy decision. Therefore, this subsection first studies
the matrix representation of the δ-fuzzy neighborhood relation
and the fuzzy decision. Then the fuzzy neighborhood approxima-
tion sets of IvIS_FD are defined by matrix operation. Finally, a
matrix-based static algorithm is designed to calculate the fuzzy
neighborhood approximations in IvIS_FD.

Definition 8. Let U = {x1, x2, . . . , xn} is a finite nonempty object
set. If A ⊆ F(U), then A can be written as a characteristic vector
shown as G(A) = [gi]n×1, where

gi = A(xi), 1 ≤ i ≤ n. (12)

Example 2. From Table 3, U = {x1, x2, . . . , x7}, the fuzzy decision
attribute d̃ can induce a fuzzy set on U such as

d̃ =
0.5
x1
+

0.8
x2
+

0.2
x3
+

0.2
x4
+

1.0
x5
+

0.8
x6
+

0.9
x7

.

According to Definition 8, d̃ can be written as G(d̃) = [0.5,
0.8, 0.2, 0.2, 1.0, 0.8, 0.9]T , where ‘‘T ’’ indicates the transpose
operation.
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efinition 9. Let (U, A∪ {d̃}, V , f ) be an IvIS_FD. For any B ⊆ A,
δ
B is δ-fuzzy neighborhood relation induced by B. The δ-fuzzy
eighborhood relation matrix with respect to Rδ

B is defined as
Rδ
B

U = [m
Rδ
B

ij ]n×n, where

Rδ
B

ij =

{
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B,

0, otherwise,
(13)

and n is the number of objects in U .

Example 3 (Continuation of Example 1). Let δ = 0.2, by using
Definition 9, the δ-fuzzy neighborhood relation matrix M

Rδ
A

U with
respect to Rδ

A is computed as

M
Rδ
A

U =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0.3643
0 1 0 0 0.6324 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0.6324 0 0 1 0 0
0 0 0 0 0 1 0

0.3643 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

.

efinition 10. Let (U, A∪{d̃}, V , f ) be an IvIS_FD. For any B ⊆ A,
Rδ
B is δ-fuzzy neighborhood relation induced by B, M

Rδ
B

U is the δ-
fuzzy neighborhood relation matrix with respect to Rδ

B. The fuzzy
decision d̃ can be written as a characteristic vector shown as G(d̃).
Then the fuzzy neighborhood lower and upper vectors of d̃ can be
defined as

ΦRδ
B
(d̃) = (1−M

Rδ
B

U ) ◦(∨,∧) G(d̃), (14)

ΨRδ
B
(d̃) = M

Rδ
B

U ◦(∧,∨) G(d̃), (15)

where ◦(∨,∧) is min–max composite operator and ◦(∧,∨) is max–
min composite operator.

Note: If R = [rij]m×n, S = [sij]n×l, P = R ◦(∨,∧) S = [pij]m×l and
Q = R ◦(∧,∨) S = [qij]m×l are four fuzzy matrices, then R, S, P and
Q satisfy the operation rules as

pij = ∧n
k=1(rik ∨ skj), i = 1, 2, . . . ,m, j = 1, 2, . . . , l;

qij = ∨n
k=1(rik ∧ skj), i = 1, 2, . . . ,m, j = 1, 2, . . . , l.

Obviously, Definitions 6 and 10 are equivalent.

Example 4. Given an IvIS_FD as shown in Table 3, M
Rδ
A

U is the
δ-fuzzy neighborhood relation matrix. The fuzzy neighborhood
lower and upper vectors of d̃ can be calculated as

ΦRδ
A
(d̃) = (1−M

Rδ
A

U ) ◦(∨,∧) G(d̃)

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 0.6357
1 0 1 1 0.3676 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 0.3676 1 1 0 1 1
1 1 1 1 1 0 1

0.6357 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

◦(∨,∧)

⎡⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9

⎤⎥⎥⎥⎥⎥⎥⎦
7×1

=

⎡⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
0.8
0.8

0.6357

⎤⎥⎥⎥⎥⎥⎥⎦
7×1

,

Ψ δ (d̃) = M
Rδ
A
◦ G(d̃)
RA U (∧,∨)

5

Table 4
The time complexity of Algorithm 1.
Steps Time complexity

1–3 O(|U |)
4–8 O(|U |2)
9 O(|U |3)
10 O(|U |3)

Total O(|U | + |U |2 + |U |3)

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0.3643
0 1 0 0 0.6324 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0.6324 0 0 1 0 0
0 0 0 0 0 1 0

0.3643 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
7×7

◦(∧,∨)

⎡⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9

⎤⎥⎥⎥⎥⎥⎥⎦
7×1

=

⎡⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9

⎤⎥⎥⎥⎥⎥⎥⎦
7×1

.

Then, the fuzzy neighborhood lower and upper approximations
of d̃ are shown as

Rδ
Ad̃ =

0.5
x1
+

0.8
x2
+

0.2
x3
+

0.2
x4
+

0.8
x5
+

0.8
x6
+

0.6357
x7

,

Rδ
Ad̃ =

0.5
x1
+

0.8
x2
+

0.2
x3
+

0.2
x4
+

1.0
x5
+

0.8
x6
+

0.9
x7

.

It can be seen from Definition 10 that if we want to obtain the
fuzzy neighborhood lower and upper approximations in IvIS_FD,
we must first acquire the δ-fuzzy neighborhood relation matrix
and characteristic vector. Next, according to the above discus-
sion, we design a matrix-based static algorithm (Algorithm 1) to
calculate the fuzzy neighborhood approximations in IvIS_FD.

Algorithm 1 Matrix-based static algorithm for calculating the
fuzzy neighborhood approximations in IvIS_FD (MSFN).
Input: An I = (U, A ∪ {d̃}, V , f ) and threshold δ.
Output: Rδ

Ad̃, R
δ
Ad̃.

1: for i = 1 to |U | do
2: Calculate G(d̃) = [gi]|U |×1 according to Definition 8;
3: end for
4: for i = 1 to |U | do
5: for j = 1 to |U | do

6: Calculate M
Rδ
A

U = [m
Rδ
A

ij ]|U |×|U | according to Definition 9;
7: end for
8: end for
9: Compute: ΦRδ

A
(d̃) = (1−M

Rδ
A

U ) ◦(∨,∧) G(d̃);

10: Compute: ΨRδ
A
(d̃) = M

Rδ
A

U ◦(∧,∨) G(d̃);

11: return Rδ
Ad̃, R

δ
Ad̃.

The steps in Algorithm 1 are explained as follows. Steps 1–3 is
to generate the characteristic vector of fuzzy decision in IvIS_FD.
Steps 4–8 is to calculate the δ-fuzzy neighborhood relation ma-
trix. Step 9 is to calculate the fuzzy neighborhood lower vector.
Step 10 is to calculate the fuzzy neighborhood upper vector. Step
11 is to return the fuzzy neighborhood approximation sets. Fur-
thermore, the time complexity of the main steps in this algorithm
are listed in Table 4.
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. Updating mechanisms of fuzzy neighborhood rough set
hen multiple objects change

With the continuous development of the society, data is con-
tantly updated. We adopt the Algorithm 1 to discover knowledge
s very time-consuming when multiple objects in IvIS_FD evolve
ith time. Because this algorithm needs to recalculate knowledge

rom scratch. In order to improve the efficiency of knowledge dis-
overy in dynamic IvIS_FD, we study the updating mechanisms of
uzzy neighborhood rough set. Through the research in Section 3,
t is found that the characteristic vector and the δ-fuzzy neigh-
orhood relation matrix play important roles in obtaining fuzzy
eighborhood approximation sets. Therefore, we mainly study
he updating mechanisms of characteristic vector and δ-fuzzy
eighborhood relation matrix when objects in IvIS_FD changes
ith time.

.1. Updating mechanisms of fuzzy neighborhood rough set when
dding objects

This subsection introduces the updating strategies of G(d̃) and
Rδ
B

U when multiple objects are added to IvIS_FD. In order to
xplain the theory more clearly, an illustrative example is given.
t the same time, corresponding dynamic algorithm are designed
nd explained.

roposition 1. Let It0 = (U t0 , A ∪ {d̃}t0 , V t0 , f t0 ) be an IvIS_FD
t time t0. At time t1, the IvIS_FD has been changed to It1 =

U t1 , A ∪ {d̃}t1 , V t1 , f t1 ), where U t1 = U t0 + ∆U and ∆U =
xn+1, xn+2, . . . , xn+n′}. G(d̃t0 ) is the characteristic vector at time t0.
he updated characteristic vector at time t1 is denoted as G(d̃t1 ) =
g ′i ](n+n′)×1, where

′

i =

{
gi, 1 ≤ i ≤ n;
d̃(xi), n+ 1 ≤ i ≤ n+ n′.

(16)

roof. According to Definition 8, G(d̃t0 ) should be updated to
new characteristic vector G(d̃t1 ) = [g ′i ](n+n′)×1 when ∆U =

xn+1, xn+2, . . . , xn+n′} is added to It0 . Obviously, the fuzzy deci-
ion of It0 cannot be changed when ∆U is added to It0 . So g ′i = gi
lways holds for any 1 ≤ i ≤ n. Furthermore, for any xi ∈ ∆U ,
here is xi /∈ U , so the corresponding value in the characteristic
ector should be calculated according to Definition 8. In other
ords, g ′i = d̃(xi) for any n+ 1 ≤ i ≤ n+ n′. □

roposition 2. Let It0 = (U t0 , A ∪ {d̃}t0 , V t0 , f t0 ) be an IvIS_FD
t time t0. At time t1, the IvIS_FD has been changed to It1 =

U t1 , A ∪ {d̃}t1 , V t1 , f t1 ), where U t1 = U t0 + ∆U and ∆U =
xn+1, xn+2, . . . , xn+n′}. For any B ⊆ A, M

Rδ
B

U t0 = [m
Rδ
B

ij ]n×n is the δ-
uzzy neighborhood relation matrix with respect to Rδ

B at time t0. The
pdated δ-fuzzy neighborhood relation matrix at time t1 is denoted
s M

Rδ
B

U t1 = [m̂
Rδ
B

ij ](n+n′)×(n+n′), where

ˆ
Rδ
B

ij =

⎧⎪⎪⎨⎪⎪⎩
m

Rδ
B

ij , 1 ≤ i, j ≤ n;
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B, (n+ 1 ≤ i ≤ n+ n′)
∨(n+ 1 ≤ j ≤ n+ n′);

0, otherwise.

(17)

roof. According to Definition 9, M
Rδ
B

U t0 should be updated to a

ew fuzzy neighborhood relation matrix M
Rδ
B

U t1 = [m̂
Rδ
B

ij ](n+n′)×(n+n′)
hen ∆U = {xn+1, xn+2, . . . , xn+n′} is added to It0 . It is not
ifficult to find that M

Rδ
B can be divided into four parts, that
U t1

6

Table 5
A new IvIS_FD after adding objects.

U a1 a2 a3 a4 a5 d̃

x1 [2.17,2.86] [2.45,2.96] [5.32,7.23] [3.21,3.95] [2.54,3.12] 0.5
x2 [3.37,4.75] [3.43,4.85] [7.24,10.47] [4.00,5.77] [3.24,4.70] 0.8
x3 [1.83,2.70] [1.78,2.98] [7.23,10.27] [2.96,4.07] [2.06,2.79] 0.2
x4 [1.35,2.12] [1.42,2.09] [2.59,3.93] [1.87,2.62] [1.67,2.32] 0.2
x5 [3.46,5.35] [3.37,5.11] [6.37,10.28] [3.76,5.70] [3.41,5.28] 1.0
x6 [2.29,3.43] [2.60,3.48] [6.71,8.81] [3.30,4.23] [3.01,3.84] 0.8
x7 [2.22,3.07] [2.43,3.32] [4.37,7.05] [2.66,3.68] [2.39,3.20] 0.9

x8 [2.51,4.04] [2.52,4.12] [7.12,11.26] [4.44,6.91] [3.06,4.65] 0.7
x9 [1.24,2.00] [1.35,1.91] [3.83,5.31] [2.13,3.01] [1.72,2.34] 0.0
x10 [1.00,1.72] [1.10,1.82] [3.58,5.65] [1.67,2.53] [1.10,1.84] 0.4

is, M
Rδ
B

U t1 =

⎡⎣ [m̂1Rδ
B

ij ]n×n [m̂
2Rδ

B
ij ]n×n′

[m̂
3Rδ

B
ij ]n′×n [m̂

4Rδ
B

ij ]n′×n′

⎤⎦. Next, we make a brief

analysis of the four parts.
(1) The [m̂

1Rδ
B

ij ]n×n is the fuzzy neighborhood relation matrix of

U × U under B, that is to say, [m̂
1Rδ

B
ij ]n×n = [m

Rδ
B

ij ]n×n.

(2) The [m̂
2Rδ

B
ij ]n×n′ is the fuzzy neighborhood relation matrix of

U ×∆U under B, where

m̂
2Rδ

B
ij =

⎧⎨⎩
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B, (1 ≤ i ≤ n)
∧(n+ 1 ≤ j ≤ n+ n′);

0, otherwise.

(3) The [m̂
3Rδ

B
ij ]n′×n is the fuzzy neighborhood relation matrix of

∆U × U under B, where

m̂
3Rδ

B
ij =

⎧⎨⎩
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B, (n+ 1 ≤ i ≤ n+ n′)
∧(1 ≤ j ≤ n);

0, otherwise.

(4) The [m̂
4Rδ

B
ij ]n′×n′ is the fuzzy neighborhood relation matrix of

∆U ×∆U under B, where

m̂
4Rδ

B
ij =

⎧⎨⎩
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B, (n+ 1 ≤ i ≤ n+ n′)
∧(n+ 1 ≤ j ≤ n+ n′);

0, otherwise.

o sum up the above discussion, we can unify [m̂
2Rδ

B
ij ]n×n′ ,

m̂
3Rδ

B
ij ]n′×n and [m̂

4Rδ
B

ij ]n′×n′ into the following forms, namely,

m̂
Rδ
B

ij =

⎧⎨⎩
Rδ
B(xi, xj), (xi, xj) ∈ Rδ

B, (n+ 1 ≤ i ≤ n+ n′)
∨(n+ 1 ≤ j ≤ n+ n′);

0, otherwise.

Thus, Eq. (17) has been confirmed. □

Example 5 (Continuation of Example 4).We add ∆U = {x8, x9, x10}
to Table 3, as shown in Table 5. Then, a new object set is denoted
as U ′ = {x1, x2, . . . , x10}. First, from Eq. (17), the δ-fuzzy neigh-
borhood relation matrixM

Rδ
A

U t0 is updated as in Box I. Then, accord-
ing to Eq. (16), the characteristic vector at time t1 is computed
as G(d̃t1 ) = [0.5, 0.8, 0.2, 0.2, 1.0, 0.8, 0.9, 0.7, 0.0, 0.4]T . Finally,
from Definition 10, the fuzzy neighborhood lower and upper vec-
tors of d̃t1 can be calculated as given in Box II. From Definition 6,
the fuzzy neighborhood lower and upper approximations of d̃t1
are shown as

Rδ
Ad̃

t1 =
0.5
+

0.7039
+

0.2
+

0.2
+

0.7958
+

0.8
+

0.6357

x1 x2 x3 x4 x5 x6 x7
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M
Rδ
A

U t1 =

⎡⎣ [m̂1Rδ
A

ij ]n×n [m̂
2Rδ

A
ij ]n×n′

[m̂
3Rδ

A
ij ]n′×n [m̂

4Rδ
A

ij ]n′×n′

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0.3643 0 0 0
0 1 0 0 0.6324 0 0 0.2961 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0.6324 0 0 1 0 0 0.2042 0 0
0 0 0 0 0 1 0 0 0 0

0.3643 0 0 0 0 0 1 0 0 0
0 0.2961 0 0 0.2024 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

.

Box I.
ΦRδ
A
(d̃t1 ) = (1−M

Rδ
A

U t1 ) ◦(∨,∧) G(d̃t1 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 0.6357 1 1 1
1 0 1 1 0.3676 1 1 0.7039 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1
1 0.3676 1 1 0 1 1 0.7958 1 1
1 1 1 1 1 0 1 1 1 1

0.6357 1 1 1 1 1 0 1 1 1
1 0.7039 1 1 0.7958 1 1 0 1 1
1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

◦(∨,∧)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9
0.7
0.0
0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0.7039
0.2
0.2

0.7958
0.8

0.6357
0.7
0.0
0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×1

,

ΨRδ
A
(d̃t1 ) = M

Rδ
A

U t1 ◦(∧,∨) G(d̃t1 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0.3643 0 0 0
0 1 0 0 0.6324 0 0 0.2961 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0.6324 0 0 1 0 0 0.2042 0 0
0 0 0 0 0 1 0 0 0 0

0.3643 0 0 0 0 0 1 0 0 0
0 0.2961 0 0 0.2024 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

◦(∧,∨)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9
0.7
0.0
0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0.8
0.2
0.2
1.0
0.8
0.9
0.7
0.0
0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×1

.

Box II.
7
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able 6
he time complexity of Algorithm 2.
Steps Time complexity

2–4 O(|∆U |)
5–15 O(|U ||∆U | + |∆U |2)
16 O(|U +∆U |3)
17 O(|U +∆U |3)

Total O(|∆U | + |U ||∆U | + |∆U |2 + |U +∆U |3)

+
0.7
x8
+

0.0
x9
+

0.4
x10

,

Rδ
Ad̃

t1 =
0.5
x1
+

0.8
x2
+

0.2
x3
+

0.2
x4
+

1.0
x5
+

0.8
x6
+

0.9
x7
+

0.7
x8

+
0.0
x9
+

0.4
x10

.

According to the updating strategies of G(d̃) and M
Rδ
B

U in this
ubsection when multiple objects are added to IvIS_FD, we de-
ign a matrix-based dynamic algorithm for updating the fuzzy
eighborhood approximations as shown in Algorithm 2.

Algorithm 2 Matrix-based dynamic algorithm for updating
the fuzzy neighborhood approximations when adding multiple
objects to IvIS_FD (MDFNA).
Input:

(1) An It0 = (U t0 , A ∪ {d̃}t0 , V t0 , f t0 ) at time t0 and threshold δ;
(2) The ∆U = {xn+1, xn+2, . . . , xn+n′ } as the added object set;
(3) The characteristic vector G(d̃t0 ) at time t0 , the δ-fuzzy neighborhood

relation matrix M
Rδ
A

U t0 at time t0 .

Output: Rδ
Ad̃

t1 , Rδ
Ad̃

t1 .

1: Initialize M
Rδ
A

U t1 ← M
Rδ
A

U t0 , G(d̃
t1 )← G(d̃t0 );

2: for i = n+ 1 to n+ n′ do
3: Calculate G(d̃t1 ) = [g ′i ](n+n′)×1 according to Proposition 1;
4: end for
5: for i = n+ 1 to n+ n′ do
6: for j = 1 to n do

7: Calculate M
Rδ
A

U t1 = [m̂
Rδ
A

ij ](n+n′)×(n+n′) according to Proposition 2;

8: m̂
Rδ
A

ji = m̂
Rδ
A

ij ;
9: end for
0: end for
1: for i = n+ 1 to n+ n′ do
2: for j = n+ 1 to n+ n′ do

3: Calculate M
Rδ
A

U t1 = [m̂
Rδ
A

ij ](n+n′)×(n+n′) according to Proposition 2;
4: end for
5: end for
6: Compute: ΦRδ

A
(d̃t1 ) = (1−M

Rδ
A

U t1 ) ◦(∨,∧) G(d̃t1 );

7: Compute: ΨRδ
A
(d̃t1 ) = M

Rδ
A

U t1 ◦(∧,∨) G(d̃t1 );

8: return Rδ
Ad̃

t1 , Rδ
Ad̃

t1 .

The steps in Algorithm 2 are explained as follows. Step 1 is to
nitialize δ-fuzzy neighborhood relation matrix and characteristic
ector. Steps 2–4 is to update the characteristic vector after
dding objects. Steps 5–15 is to update the δ-fuzzy neighborhood
elation matrix after adding objects. Step 16 is to calculate the
uzzy neighborhood lower vector. Step 17 is to calculate the
uzzy neighborhood upper vector. Step 18 is to return the fuzzy
eighborhood approximation sets. Moreover, the time complexity
f the main steps in this algorithm are listed in Table 6.

.2. Updating mechanisms of fuzzy neighborhood rough set when
eleting objects

Similar to Section 4.1, we introduce the updating strategies
f G(d̃) and M

Rδ
B when multiple objects are deleted from IvIS_FD
U

8

Table 7
An IvIS_FD after deleting object set.

U a1 a2 a3 a4 a5 d̃

x1 [2.17,2.86] [2.45,2.96] [5.32,7.23] [3.21,3.95] [2.54,3.12] 0.5
x2 [3.37,4.75] [3.43,4.85] [7.24,10.47] [4.00,5.77] [3.24,4.70] 0.8
x3 [1.83,2.70] [1.78,2.98] [7.23,10.27] [2.96,4.07] [2.06,2.79] 0.2
x4 [1.35,2.12] [1.42,2.09] [2.59,3.93] [1.87,2.62] [1.67,2.32] 0.2
x5 [3.46,5.35] [3.37,5.11] [6.37,10.28] [3.76,5.70] [3.41,5.28] 1.0
x6 [2.29,3.43] [2.60,3.48] [6.71,8.81] [3.30,4.23] [3.01,3.84] 0.8
x7 [2.22,3.07] [2.43,3.32] [4.37,7.05] [2.66,3.68] [2.39,3.20] 0.9

in this subsection. An illustrative example is given to explain
the related theory more clearly. What is more, corresponding
dynamic algorithm is designed to update the fuzzy neighborhood
approximations.

Proposition 3. Let It0 = (U t0 , A∪ {d̃}t0 , V t0 , f t0 ) be an IvIS_FD at
time t0. At time t1, the IvIS_FD has been changed to It1 = (U t1 , A∪
{d̃}t1 , V t1 , f t1 ), where U t1 = U t0−∆U and ∆U = {xl1 , xl2 , . . . , xln′ }
where 1 ≤ l1 < l2 < · · · < ln′ ≤ n. G(d̃t0 ) is the characteristic vector
at time t0. The updated characteristic vector at time t1 is denoted as
G(d̃t1 ) = [g ′i ](n−n′)×1, where

g ′i =
{
gi+k−1, lk−1 − k+ 1 < i < lk − k+ 1, 1 ≤ k ≤ n′;
gi+n′ , ln′ − n′ + 1 ≤ i ≤ n− n′.

(18)

Proof. According to Definition 8, G(d̃t0 ) should be updated to
a new characteristic vector G(d̃t1 ) = [g ′i ](n−n′)×1 when ∆U =
{xl1 , xl2 , . . . , xln′ } is removed from It0 . Obviously, for any lk−1 <

i < lk, where 1 ≤ k ≤ n′, the elements gi in characteristic
vector G(d̃t0 ) should be shifted forward by k − 1 positions when
xlk is deleted from It0 , namely, g ′i = gi+k−1. Furthermore, the
elements gi in characteristic vector G(d̃t0 ) will be shifted forward
by n′ positions for any ln′ − n′ + 1 ≤ i ≤ n − n′. That is to say
g ′i = gi+n′ for any ln′ − n′ + 1 ≤ i ≤ n− n′. □

Proposition 4. Let It0 = (U t0 , A∪ {d̃}t0 , V t0 , f t0 ) be an IvIS_FD at
time t0. At time t1, the IvIS_FD has been changed to It1 = (U t1 , A∪
{d̃}t1 , V t1 , f t1 ), where U t1 = U t0−∆U and ∆U = {xl1 , xl2 , . . . , xln′ }

where 1 ≤ l1 < l2 < · · · < ln′ ≤ n. For any B ⊆ A,M
Rδ
B

U t0 = [m
Rδ
B

ij ]n×n

is the δ-fuzzy neighborhood relation matrix with respect to Rδ
B at time

t0. The updated δ-fuzzy neighborhood relation matrix at time t1 is
denoted as M

Rδ
B

U t1 = [m̂
Rδ
B

ij ](n−n′)×(n−n′), where

m̂
Rδ
B

ij =

⎧⎪⎨⎪⎩
m

Rδ
B

(i+k−1,j+k−1) , lk−1 − k+ 1 < i, j < lk − k+ 1,
1 ≤ k ≤ n′;

m
Rδ
B

(i+n′,j+n′) , ln′ − n′ + 1 ≤ i, j ≤ n− n′.

(19)

Proof. The proof process is similar to Proposition 3. □

Example 6 (Continuation of Example 4). We delete ∆U = {x2, x6}
from Table 3, as shown in Table 7. Then, a new object set is
denoted as U ′ = {x , x , x , x , x }. First, according to Eq. (19),
1 3 4 5 7
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he δ-fuzzy neighborhood relation matrix M
Rδ
A

U t0 is updated as

Rδ
A

U t1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ◁0 0 0 0 ◁0 0.3643
◁0 ◁1 ◁0 ◁0 ���0.6324 ◁0 ◁0
0 ◁0 1 0 0 ◁0 0
0 ◁0 0 1 0 ◁0 0
0 ���0.6324 0 0 1 ◁0 0
◁0 ◁0 ◁0 ◁0 ◁0 ◁1 ◁0

0.3643 ◁0 0 0 0 ◁0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
1 0 0 0 0.3643
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0.3643 0 0 0 1

⎤⎥⎥⎥⎦
5×5

.

Then, according to Eq. (18), the characteristic vector at time t1
s computed as G(d̃t1 ) = [0.5, 0.2, 0.2, 1.0, 0.9]T . Finally, from
efinition 10, the fuzzy neighborhood lower and upper vectors
f d̃t1 can be calculated as

Rδ
A
(d̃t1 ) = (1−M

Rδ
A

U t1 ) ◦(∨,∧) G(d̃t1 )

=

⎡⎢⎢⎢⎣
0 1 1 1 0.6357
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

0.6357 1 1 1 0

⎤⎥⎥⎥⎦
5×5

◦(∨,∧)

⎡⎢⎢⎢⎣
0.5
0.2
0.2
1.0
0.9

⎤⎥⎥⎥⎦
5×1

=

⎡⎢⎢⎢⎣
0.5
0.2
0.2
1

0.6357

⎤⎥⎥⎥⎦
5×1

,

Rδ
A
(d̃) = M

Rδ
A

U t1 ◦(∧,∨) G(d̃t1 ) =

⎡⎢⎢⎢⎣
1 0 0 0 0.3643
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0.3643 0 0 0 1

⎤⎥⎥⎥⎦
5×5

◦(∧,∨)

⎡⎢⎢⎢⎣
0.5
0.2
0.2
1.0
0.9

⎤⎥⎥⎥⎦
5×1

=

⎡⎢⎢⎢⎣
0.5
0.2
0.2
1.0
0.9

⎤⎥⎥⎥⎦
5×1

.

ccording to Definition 6, the fuzzy neighborhood lower and
pper approximations of d̃t1 are shown as

δ
Ad̃

t1 =
0.5
x1
+

0.2
x3
+

0.2
x4
+

1.0
x5
+

0.6357
x7

,

Rδ
Ad̃

t1 =
0.5
x1
+

0.2
x3
+

0.2
x4
+

1.0
x5
+

0.9
x7

.

In this subsection, we discuss the updating strategies of G(d̃)
and M

Rδ
B

U when many objects are removed from the original
IvIS_FD. Next, we introduce a corresponding incremental algo-
rithm (see Algorithm 3) based on these updating strategies for
updating the fuzzy neighborhood approximations.

The steps in Algorithm 3 are explained as follows. Steps 1–6
is to update the δ-fuzzy neighborhood relation matrix and char-
acteristic vector after objects are deleted. Step 7 is to calculate
the fuzzy neighborhood lower vector after objects are deleted.
Step 8 is to calculate the fuzzy neighborhood upper vector after
objects are deleted. Step 9 is to return the fuzzy neighborhood
approximation sets. In addition, the time complexity of the main
steps in this algorithm are listed in Table 8.
9

Algorithm 3 Matrix-based dynamic algorithm for updating the
fuzzy neighborhood approximations when deleting multiple
objects from IvIS_FD (MDFND).
Input:

(1) An It0 = (U t0 , A ∪ {d̃}t0 , V t0 , f t0 ) at time t0 and threshold δ;
(2) The ∆U = {xl1 , xl2 , . . . , xln′ } is an deleted object set;
(3) The characteristic vector G(d̃t0 ) at time t0 , the δ-fuzzy neighborhood

relation matrix M
Rδ
A

U t0 at time t0 .

Output: Rδ
Ad̃

t1 , Rδ
Ad̃

t1 .
1: for k = 1 to n′ do
2: M

Rδ
A

U t0 (lk, : ) = [];

3: M
Rδ
A

U t0 ( : , lk) = [];

4: G(d̃t0 )(lk, : ) = [];
5: end for
6: M

Rδ
A

U t1 ← M
Rδ
A

U t0 , G(d̃
t1 )← G(d̃t0 );

7: Compute: ΦRδ
A
(d̃t1 ) = (1−M

Rδ
A

U t1 ) ◦(∨,∧) G(d̃t1 );

8: Compute: ΨRδ
A
(d̃t1 ) = M

Rδ
A

U t1 ◦(∧,∨) G(d̃t1 );

9: return Rδ
Ad̃

t1 , Rδ
Ad̃

t1 .

Table 8
The time complexity of Algorithm 3.
Steps Time complexity

1–6 O(|∆U |)
7 O(|U −∆U |3)
8 O(|U −∆U |3)

Total O(|∆U | + |U −∆U |3)

Table 9
The summary of data set.
No. Data sets Abbreviation Samples Features

1 Iris Iris 150 4
2 Ecoli Ecoli 336 7
3 Housing Hous 506 13
4 Cloud Cloud 1024 10
5 Banknote Authentication Bank 1372 4
6 Yeast Yeast 1484 8
7 Wine Quality-red Wred 1599 11
8 Abalone Abalone 4177 7
9 Wine Quality-white Wite 4898 11

5. Experimental evaluations

In this section, we prove the performance of the dynamic fuzzy
neighborhood rough set model proposed in this paper through
a series of comparative experiments. Performance evaluation is
mainly explained from two aspects. On the one hand, the effec-
tiveness of the dynamic model is verified by the effectiveness
analysis of algorithms MDFNA and MDFND. On the other hand,
the efficiency of the dynamic model is demonstrated by the
efficiency analysis of algorithms MDFNA and MDFND.

5.1. Preparation before experiment

In this subsection, we mainly introduce the method of con-
structing IvIS_FD from numerical data sets, the compared algo-
rithms, and the running environment of experiment.

As we all know, very few real interval-valued data sets are
publicly available, so we cannot obtain them. In [17,24,38,44,
50–52], the interval-valued data sets are obtained from numer-
ical data sets according to different data preprocessing methods.
Therefore, we first download nine numerical data sets from UCI.
Specific information about the original numerical data sets is
shown in Table 9.
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a

Then, we adopt the data preprocessing method in [17]. Let
(U, A, V , f ) be a numerical information system. For any x ∈ U and
∈ A, f −(x, a) = f (x, a)−2θa, f +(x, a) = f (x, a)+2θa, where θa is

the standard deviation of Va. Therefore, the original real-valued
f (x, a) becomes the current interval-valued [f −(x, a), f +(x, a)].
Consequently, the IvIS is generated from the original numerical
information system. In addition, the fuzzy decision of IvIS is a
fuzzy set about U , which can be generated by Matlab R2014a.

In this paper, in addition to algorithm MSFN, we also adopt
three related algorithms proposed by other scholars as com-
parative algorithms to evaluate the performance of algorithm
MDFNA and MDFND. The three related algorithms are introduced
as follows.

• Algorithm IVPR. Chen and Qin defined the variable precision
tolerance relation based on similarity and proposed a rough
set model under the background of IvIS [46]. We design the
algorithm corresponding to the model according to the rel-
evant theory, which is called algorithm IVPR. The parameter
α involved in the model is preset to 0.9.
• Algorithm IPSD. Dai et al. proposed the similarity measure

between two intervals based on possible degree in IvDS,
and defined the θ-similarity classes of objects. Then, the
expressions of upper and lower approximations were given
in IvDS [16]. We design algorithm IPSD according to the
relevant information to obtain the corresponding upper and
lower approximation sets. The parameter θ is preset to 0.9.
• Algorithm IWSD. For the incomplete IvIS, Dai et al. defined

the α-weak similarity relation and α-weak θ similarity class,
and proposed a novel rough set model for the incomplete
IvIS [19]. We design the algorithm IWSD according to the
relevant knowledge. Parameters α and θ in the model are
preset to 0.6 and 0.9, respectively.

The parameter δ in each algorithms proposed in this study is
set as 0.9. All the algorithms are implemented by Matlab R2014a,
and all the comparative experiments are executed on a personal
computer with Intel(R) Core(TM) i5-10210U CPU 1.60 GHz, 8.0 GB
of memory.

5.2. The effectiveness analysis of algorithms MDFNA and MDFND

For different data sets, we show the effectiveness of algo-
rithms MDFNA and MDFND by comparing the approximation
accuracy and running time of different algorithms under a fixed
incremental ratio in this section. Approximate accuracy is used
as an evaluation index of validity, which is defined by Acc =∑

x∈U lower(x)/
∑

x∈U upper(x).
In the experiment of data dynamic increase, we take the first

50% of the objects from each data set in Table 9 as the original
object set, and the remaining objects as the newly added objects.
In the experiment of data dynamic deletion, the object set of
each data set in Table 9 is taken as the original objects, and then
50% of the objects from each data set are randomly selected as
the deleted objects. Subsequently, we use different algorithms to
compute the upper and lower approximate sets corresponding to
different rough set models. Then record the approximate accuracy
and running time of each experiment separately. Finally, the
experimental results of approximate accuracy and running time
are shown in Tables 10 and 11 respectively.

For each data set, Table 10 shows that the approximation
accuracy of algorithm MDFNA (MDFND) is not only equal to
that of algorithm MSFN, but also higher than that of the other
three algorithms. In addition, it can be seen from Table 11 that
as the scale of objects in data set continues to increase, the
running time of all algorithms also increases. But compared with
other algorithms, algorithm MDFNA (MDFND) are always faster
than other algorithms when the data changes dynamically. These
phenomena fully demonstrate the effectiveness of the dynamic
algorithms.
10
5.3. The efficiency analysis of algorithms MDFNA and MDFND

In this subsection, we compare the running time of dynamic
algorithm MDFNA (MDFND) with the other four algorithms under
different increment ratios to illustrate the efficiency of dynamic
fuzzy neighborhood rough set when objects in the data sets
change dynamically. Detailed experimental design and analysis
are as follows.

In the experiment of data dynamic increase, we select the first
50% of the objects from each data set in Table 9 as the original
data set, and then divide the remaining objects into five equal
parts and add them to the original data set in turn, that is, 20%,
40%, . . . , 100% of the remaining objects are added to the original
data set. Subsequently, we run different algorithms and record
the running time of each experiment. The experimental results
are shown in Fig. 1, where the abscissa represents the ratio of
adding objects, and the ordinate represents the calculation time
(in seconds) to obtain rough approximations. In the experiment
of data dynamic deletion, we take the object set of each data
set in Table 9 as the original objects, and then randomly delete
10%, 20%, . . . , 50% of them. Similar to the experiment of data
dynamic increase, we run five different algorithms and record
the running time. The experimental results are shown in Fig. 2,
where the abscissa represents the ratio of deleting objects, and
the ordinate represents the calculation time (in seconds) to obtain
the approximation sets. Different colors and marked broken lines
are used to represent the running time of different algorithms.
Please refer to the legend for corresponding information.

As can be seen from Fig. 1, the running time of all algorithms
increases as the ratio of adding objects increases. In addition,
the running time of algorithm MDFNA is always lower than that
of the other four algorithms. Similarly, we can see from Fig. 2
that the running time of all algorithms decreases as the ratio of
deleting objects increases. At the same time, the running time
of algorithm MDFND is always lower than that of the other
four algorithms. The main reason for this phenomenon is that
algorithms MDFNA and MDFND take the δ-fuzzy neighborhood
relation matrix and characteristic vector of the initial data set
as the initial information, and update the initial information
after adding or deleting objects, thus saving a lot of repeated
calculation time.

5.4. Summary

The results of experimental evaluations show that algorithms
MDFNA and MDFND not only shorten the time of obtaining ap-
proximation sets in dynamic environment, but also have higher
approximation accuracy than other algorithms. Therefore, we
can draw the following conclusion: the proposed dynamic fuzzy
neighborhood rough set for IvIS_FD is effective and efficient.

6. Conclusions

This paper proposes a novel fuzzy neighborhood rough set
model for mining knowledge from IvIS_FD, and constructs the
incremental update approximation mechanisms based on the
proposed model for dynamic IvIS_FD. Firstly, a quantified δ-fuzzy
neighborhood relation and its induced fuzzy information granule
are defined. Secondly, the δ-fuzzy neighborhood rough set model
and its matrix representation are investigated. Subsequently, two
kind of incremental mechanisms and corresponding dynamic al-
gorithms are introduced to update fuzzy neighborhood approxi-
mations when multiple objects are added to or deleted from an
IvIS_FD, respectively. Finally, a series of comparative experiments
are performed to show the effectiveness and efficiency of the
proposed model.
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he comparison of approximation accuracy of different algorithms in dynamic environment.
Data set The addition of objects The deletion of objects

IVPR IPSD IWSD MSFN MDFNA IVPR IPSD IWSD MSFN MDFND

Iris 0.3871 0.0385 0.0385 0.7727 0.7727 0.5385 0.0968 0.1200 0.8426 0.8426
Ecoli 0.6765 0.2364 0.1000 0.9228 0.9228 0.7368 0.4211 0.2143 0.9693 0.9693
Hous 0.8750 0.4375 0.3111 0.9478 0.9478 0.7917 0.8065 0.5806 0.9530 0.9530
Cloud 0.3333 0.0217 0.0154 0.7092 0.7092 0.5000 0.0368 0.0187 0.8285 0.8285
Bank 0.0089 0.0008 0.0008 0.2120 0.2120 0.0410 0.0060 0.0026 0.3463 0.3463
Yeast 0.8774 0.2752 0.1851 0.9537 0.9537 0.9341 0.3894 0.2072 0.9633 0.9633
Wred 0.5602 0.4245 0.3712 0.7948 0.7948 0.7065 0.6947 0.5818 0.8845 0.8845
Abalone 0.0285 0.0029 0.0021 0.2454 0.2454 0.0500 0.0044 0.0023 0.3262 0.3262
Wite 0.4514 0.3395 0.2790 0.7280 0.7280 0.6075 0.5413 0.4907 0.8374 0.8374
Table 11
The comparison of running time of different algorithms in dynamic environment (in seconds).
Data set The addition of objects The deletion of objects

IVPR IPSD IWSD MSFN MDFNA IVPR IPSD IWSD MSFN MDFND

Iris 0.156 0.297 0.141 0.172 0.141 0.031 0.031 0.047 0.047 0.016
Ecoli 1.063 1.063 1.156 1.344 0.750 0.234 0.313 0.266 0.328 0.094
Hous 3.516 3.703 3.984 4.281 2.297 0.813 0.859 0.938 1.031 0.156
Cloud 11.203 11.859 12.453 13.656 8.094 2.734 2.797 3.094 3.391 0.625
Bank 10.797 10.219 10.016 15.156 9.500 2.578 2.453 2.516 3.656 1.109
Yeast 18.328 18.281 20.156 23.313 14.047 4.531 4.625 4.969 5.938 1.219
Wred 27.625 27.563 29.203 32.922 19.453 6.688 6.875 7.516 8.172 1.406
Abalone 130.609 131.172 143.078 169.625 104.703 32.984 32.563 35.813 42.938 9.516
Wite 266.078 262.906 277.375 307.516 180.063 64.594 64.563 69.094 77.047 13.188
Fig. 1. The computational time of different algorithms versus different ratios of adding objects.
11
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Fig. 2. The computational time of different algorithms versus different ratios of deleting objects.
.1. The theoretical and practical implications

In Section 3, the δ-fuzzy neighborhood relation has been pro-
osed to realize the quantitative description of binary relation
etween objects. Compared with the variable precision com-
atibility relation mentioned in [46], the proposed quantitative
elation can accurately describe the degree of similarity between
bjects from [0, 1], while the former is a Boolean relation that

can only describe the relation between objects qualitatively from
{0, 1}. On the other hand, the incremental update mechanisms
proposed in Section 4 take the δ-fuzzy neighborhood relation ma-
trix and the characteristic vector at time t0 as the prior knowledge
to update rough approximations at time t1. Theoretically, this can
reduce the time for us to obtain approximations, and the time
complexity of the three algorithms can confirm this point.

Nine publicly available data sets from UCI are used for nu-
merical comparative experiments. The experimental results have
demonstrated the effectiveness and efficiency of incremental al-
gorithms MDFNA and MDFND to update the fuzzy neighborhood
approximations as compared to algorithm MSFN. Meanwhile, we
have also compared our model with other three related models
proposed by other scholars in approximation accuracy. Accuracy
results illustrate that our method performs quite better than
other methods for acquiring rough approximations from IvIS_FD.
12
6.2. The weaknesses of the proposed method and future works

Some weaknesses of the proposed rough set model and dy-
namic algorithms are introduced as follows. First, although we
introduce a function (i.e. Eq. (3)) to calculate the similarity degree
of objects in interval-valued data, there may be many functions
to describe the similarity degree. We should discuss them and
study the choice of parameter in the proposed model. Second,
the approximations of the proposed model are represented by
the matrix method. Although the matrix representation method
can simplify the calculation process and intuitively express the
construction of the method, the calculation space occupied by
the matrix operation is relatively large, which may not be suit-
able for large-scale data knowledge acquisition. Third, the pro-
posed dynamic algorithm acquires new knowledge on the basis of
original knowledge. The dynamic algorithm avoids the repeated
calculation of the original knowledge, so it can reduce the time
cost. However, the storage of original knowledge requires a cer-
tain amount of storage space, which increases the storage space
requirements of computing devices.

In future work, on the one hand, the above-mentioned weak-
nesses will be emphatically studied and overcome. On the other
hand, some research gaps will continue to be studied. Firstly, we
can further consider the updating mechanisms of fuzzy neighbor-
hood rough set when the attributes or attribute values change
with time. Secondly, missing attribute values are inevitable in
some actual databases. Therefore, it is necessary to construct an
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ppropriate rough set model for incomplete IvIS_FD to acquire
nowledge. Thirdly, in practical applications, the collected data
re often inevitably polluted with noise due to the influence of
ssorted unstable factors in the process of data collection, stor-
ge and transmission. Hence, a robust model should be further
roposed to combat noise interference.
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